
COMS 4995 - Applied Machine Learning
Recommendation System for Amazon (Team 29)
Ke Li(kl3352), Parth Gupta(pg2677), Senqi Zhang(sz3016), Vishweshwar Tyagi(vt2353), Xuanhao Wu (xw2744)

Abstract – Recommendation Systems have
become a crucial factor in driving revenues of
tech giants such as Amazon and Netflix. They
help reduce the cost of finding and selecting
items in an online shopping environment by
accurately predicting whether a particular user
would prefer an item or not. In this project, we
set forward to build a recommendation system of
our own using Content-based filtering and
Collaborative filtering. Moreover, we calculate
the performance of our model using machine
learning models.

I. INTRODUCTION
We use the video games category under the
Amazon Review Data (2018), which has over 2.5
million reviews and 84,819 observations in the
metadata dataset. It consists of two datasets, the
review dataset consisting of information from
each review and the metadata dataset consisting
of information about each product. These two are
linked together by ‘asin’, which denotes the
product’s unique ID. We tried several approaches
based on content-based filtering and
collaborative filtering to recommend video
games to users.

II. DATA EXPLORATION

A. Initial Data Cleaning and Processing
After initial exploration, we found out that there
were duplicates in the meta dataset. So, we removed
them. Some product IDs in the review dataset were
absent from the meta dataset. We got rid of rows
from the review dataset containing such product
IDs. We also merged the review and meta dataset
using a left join on ‘asin’. Doing so, we lost product
IDs present in the meta dataset that were absent
from the review dataset. It is reasonable since no
one reviewed these and they won’t add too much
information to our system. In order to draw
meaningful insights and overcome computational

limitations, we obtained a 10-core subset from the
merged data. A k-core subset ensures that each
product is reviewed at least k times as well as each
reviewer has provided at least k reviews, which
avoids the data sparsity and reduces the number of
reviews from 2,565,349 to 126,703.

B. Missing Values

Table 1. Table of Missing Values

Feature Names Proportion(%)

overall 0.0000

verified 0.0000

reviewTime 0.0000

reviewerID 0.0000

asin 0.0000

main_cat 0.0000

title 0.0000

summary 0.0174

reviewText 0.0268

reviewerName 0.0331

brand 0.0331

category 0.2352

rank 1.0489

description 1.1389

also_view 1.6156

also_view 4.9415

feature 6.2950

style 32.1366

vote 73.7433

price 90.2867

date 97.3600

image 99.3725

details 99.6859

similar_item 99.9108

All features that have over 40% of missing data will
be dropped, except for “vote” in which we will
replace the NaN values with 0. Other features such
as “imageURL” and “unixReviewTime” have a

very low number of missing values, but we also
drop them as we believe they will not contribute to
the model.

C. Distribution of Overall Ratings

Fig 1. Pie Chart of Overall Ratings

We explored the distribution of overall ratings for
the products. Most of the products have ratings of 4
or 5, and very few have ratings less than 3.

D. Sentiment Analysis

Fig 2. Boxplots of Sentiment Score

We also perform sentiment analysis for each review
in our dataset, and there is an apparent increase in
sentiment score as the rating increases. Though we
see some outliers that do not make much sense, we
believe that the sentiment score will add value to
our recommendation. For the content-based model,
we performed many NLP techniques to standardize
the text data, and it will be elaborated more in later
sections.

III. MODEL APPROACHES
We used two approaches that are commonly used in
recommender systems: collaborative filtering and
content-based filtering.

A. Collaborative Filtering
In collaborative filtering, we create a user-item
matrix and recommend items that similar users have
already interacted with. Then estimate the user's
ratings based on ratings of other similar users.

Here, we have created a rating matrix R where
R[i][j] represents the overall rating that ith user
gave to the jth item. R[i][j]. As for the
recommendations, each user will have different
products recommended to them as they are inferred
based on the ratings provided by similar users. We
have used different algorithms to predict the value
of R[i][j] if the ith user has not interacted with the
jth item before. For the implementation part, we
have used the surprise library. We have used
different algorithms like the KNN model, SVD
model, and many more.

The KNN model uses cosine similarity or
Pearson's correlation to find similar users to see the
neighbors. In the case of SVD, each user will have
different products recommended to them as they are
inferred by filling out missing entries in the matrix
during matrix factorization using SVD.

B. Content-based Filtering
Content-based filtering compares the similarity
between two items based on specific metrics and
recommends the most similar items to an item that
the user previously liked. In our case, we
recommend video games that have high similarity
to the video games that one user has given a
positive review. Unlike collaborative filtering, it
creates the user profile by characterizing the user
based on item features without comparing it to other
users’ preferences. In other words, it does not
utilize any information about other users and hence
does not have the cold start problem. The method of
content-based filtering approach can be summarized
into the following steps:

1. Item representation: The metadata and review
information of each video game, including
title, description, reviews, and summary of
reviews, are extracted to represent the item.

2. User profile representation: User profiles are
generated based on a user’s review history. We
only select video games that the user has

previously reviewed and given a high rating, as
we do not want to recommend games similar to
the ones that the user dislikes.

3. Recommendation: A list of video games is
selected and recommended to the user based on
the similarity between the games that a user
likes and the games that a user is most likely
interested in.

We implemented two content-based filtering
recommender systems, one using only video games’
metadata, including description, category, brand,
and feature columns. The other used metadata and
the review data, including reviews texts and their
summary. We would like to see how the review data
for each item is helping the system to recommend
similar items to a user.

For each system, we preprocessed the text data
by the following steps: (1) removing all
punctuations, (2) removing all stopwords, (3)
lemmatizing the text. Then we applied two
vectorization techniques, bags of words and
TF-IDF, to calculate the cosine similarity we used
to represent the similarity between two games. For
both bags of words and TF-IDF, we use unigram
and bigram to also look at two words at a time.
After calculating a pairwise cosine similarity matrix
for all the video games in our dataset, we wrote a
function to find the top 30 most similar video
games based on the cosine similarity scores.

After that, we kept only reviews with a 5.0
rating and aggregated products by users. After
constructing the list, we were able to recommend
items that are similar to each user’s preference.

IV. DISCUSSION AND RESULTS
In this section, we will discuss the main results and
insights we gained from the models introduced in
the previous section.

A. Collaborative Filtering

Table 2. Results of Collaborative Filtering

Algorithm Test RMSE Test Time

SVD 0.9467 0.2782

BaselineOnly 0.9768 0.2506

KNNBaseline 0.9957 2.9382

KNNWithZScore 0.9959 2.7282

CoClustering 1.0019 0.2437

NMF 1.0295 0.2499

KNNBasic 1.0952 2.3344

For example, for the user id A2MNJFQXCLMKT8,
SVD Model recommends:

1) Tomb Raider: Definitive Edition - PlayStation 4
2) Assassin's Creed IV Black Flag - PlayStation 4
3) DualShock 4 Wireless Controller for PlayStation 4
- 20th Anniversary Edition4.
4) Resident Evil 5 - Standard Edition - PlayStation 4
5) Batman: Return to Arkham - PS4 Standard Edition

KNN model recommends:
1) Batman: Return to Arkham - PS4 Standard Edition
2) Ortz PS4 Vertical Stand with Cooling Fan [Dual
Charger Ports] Premium Quality Controller
3) Resident Evil 5 - Standard Edition - PlayStation 4
4) Battlefield 4 - PlayStation 4
5) DualShock 4 Wireless Controller for PlayStation 4
- 20th Anniversary Edition

B. Content-based Filtering
We were able to give recommendations at both the
item and user levels. For example, if a user likes
“Legend of Zelda Box Set Prima Official Game
Guide”, our recommender system using TF-IDF
with reviews method will return the following top 3
recommendations:

1) The Legend of Zelda: Ocarina of Time
2) The Legend of Zelda: Twilight Princess
3) The Legend of Zelda: Spirit Tracks
Even though it is mostly domain knowledge to

determine the model’s performance, we tried some
methods to evaluate the performance roughly. We
utilized “also_buy” and “also_view” features by
calculating the overlap percentage between the
recommendation set and those two sets,
respectively. Then we tried to show the overall
review sentiment for products we recommended,
and they all presented to be positive. In the table
below, it is clear to see that TF-IDF performs better
than bag-of-words, and adding the review data
significantly increases the overlap.

Table 3: Effect of Features

Vectorization Features Also Buy Also View

Bag-of-words metadata +
reviewText 0.021 0.012

TF-IDF metadata 0.132 0.141

TF-IDF metadata +
review summary

0.153 0.161

TF-IDF metadata +
reviewText

0.164 0.170

